
 

 

 

 

 

 

 

 

Notating Stochastic Music with DISSCO 
 

Andrew Orals and Dr. Sever Tipei 

 

Computer Music Project of the School of Music 

National Center for Supercomputing Applications 

University of Illinois  



ABSTRACT 

 

The Digital Instrument for Sound 

Synthesis and Composition (DISSCO) 

unifies algorithmic composition with score 

and sound file output in one seamless 

process. Within DISSCO, the composition 

module employs a tree structure to represent 

the piece in layers of abstraction. An 

important problem is converting the internal 

structure of the piece into Western musical 

notation. This has been a topic of 

considerable research, devising methods for 

reliably producing notation output. This 

paper details a new design which extends 

these notation methods to multiple distinct 

sections and builds a foundation for future 

contribution and extension. 

 

1.  INTRODUCTION 

 

1.1 DISSCO 

 

The Digital Instrument for Sound 

Synthesis and Composition, abbreviated 

DISSCO, is software for computer-assisted 

algorithmic composition. DISSCO unifies 

the process of composition by cooperating 

three modules, namely the composition 

module (CMOD), the library for additive 

synthesis (LASS), and the graphical user 

interface (LASSIE). DISSCO also offers a 

comprehensive approach by taking 

composition parameters from the user, 

performing computations, and then 

outputting a finished product as a seamless 

process [4]. 

 

While DISSCO allows music of any 

style with both stochastic and deterministic 

parameters, it exhibits a strong bias towards 

pre-planned compositions employing 

controlled randomness. Such compositions 

constitute "Manifold Compositions," 

wherein one set of parameters can produce a 

variety of interpretations [3]. These 

variations correspond to unique random 

seeds. DISSCO's unified and comprehensive 

approach reflects its underlying "black box" 

design principle: after the user designs the 

parameters of the composition, the user may 

not interrupt or otherwise participate in the 

process. Doing so would falsify the 

experiment and subvert the 

conceptualization of the piece as a manifold 

composition [4]. In this sense, DISSCO acts 

as a companion to the composer, 

complementing the skill of the user in 

creating parameters with the computer’s 

aptitude in pseudo-randomness and speed 

[2]. 

 

1.2 Elementary Displacement Units and 

Sieves 

 

Numerical sieves are a powerful and 

flexible tool in discrete mathematics to filter 

sets that can be mapped to the natural 

numbers based on numerical equivalence 

classes. To place objects in metric time, 

DISSCO employs a grid of Elementary 

Displacement Units (EDU's) and filters 

values from this grid using sieves, as shown 

by Xenakis [6]. 

 

The Elementary Displacement Unit 

is the basic unit of rhythm in an exact event. 

By defining the number of EDU's per beat 

and the note representing the beat through a 

time signature, a rhythmic system can be 

created. Then, sieves can select certain 

rhythms and discard others. For example, 

consider a time signature where each quarter 

note represents 6 EDU's. A sieve of 60

 allows only quarter notes, where 6 is the 

"modulus of symmetry" and the 

index 0 represents a shift from the reference 

point. A sieve of 63 then allows only eighth 

notes. Using Boolean operations, sieves can 

be combined to construct more discerning 

rhythmic systems. For instance, a sieve of 

the form: 

 

60∪62∪63 

 

would allow quarter notes, eighth notes, and 

eighth note triplets. 

 



1.3 DISSCO’s Event Structure 

 

Internally, CMOD employs a tree 

directed graph structure. Each node in the 

tree is an Event object, while the leaves are 

Bottom objects, a derivative of the Event 

class. These Events represent the 

composition as musical concepts of varying 

abstraction, composed of a name, start time, 

tempo, duration, and a collection of child 

events. All Events hold a global start time 

relative to the start of the piece and a 

duration in seconds, designated 'inexact,' and 

some Events also hold an integer start time 

and duration in EDU's, designated 'exact.' 

Events are categorized generally as Top, 

High, Mid, Low, and Bottom, and the 

Events can represent any layer of abstraction 

that the composer wishes so long as the Top 

event represents the entire piece and there is 

at least one Bottom event as a leaf node in 

the tree [5]. Bottom events cannot be internal 

nodes. For example, the children of the Top 

event might represent movements of a piece, 

the next level of abstraction might represent 

sections of these movements (i.e. the 

development section of sonata form), and a 

Bottom event might represent a specific 

melody in the composition. This makes the 

form of the composition a natural product of 

the data structure. 

 

 
 

In addition to Events, CMOD defines 

a Tempo object which has its own global 

start time in seconds, defining the number of 

beats per bar, the note type which represents 

a beat, and the number of EDU's per beat. A 

Tempo can have a start time anywhere 

between the beginning and ending of the 

piece in seconds. Since an Event's exact start 

time in EDU's is relative, the Tempo object 

acts as an anchor point defining the 

beginning of the exact Event. Without a 

corresponding Tempo, the EDU's within an 

exact Event are meaningless. 

 

The possibility of nested exact 

Events within inexact events presents some 

special cases. Whenever there is an exact 

child with an inexact parent, this triggers a 

new Tempo object to be created in the parent 

as a reference point for the child. 

Furthermore, whenever there is an exact 

child with an exact parent, the child inherits 

the parent's tempo to prevent implicitly 

nested tempos, as the Events are related by 

nature of them both being exact. 

 

1.4 The Problem 

 

Although DISSCO's manifold 

compositions lend themselves naturally to 

sound synthesis, notating output using 

western notation, while preserving the 

underlying intention of the musical events, 

has been a topic of considerable research 

yielding substantial progress. Previous work 

has developed reliable methods for notating 

single musical lines of uniform tempo and 

time signature; however, this work assumes 

that the Bottom events of the entire piece are 

exact [2]. Furthermore, because the 

implementation was developed by many 

contributors at different times, the notation 

logic was very tightly coupled with code for 

the Bottom and Note classes, making it 

difficult to extend and modularize. 

Therefore, the goal of this research is to add 

functionality to notate distinct exact sections 

of the piece and improve the extensibility 

and documentation of the notation module. 

To this end, the following problems must be 

considered: 

 

1. Exact sections can be separated by 

inexact time spans, necessitating the 

ability to instantiate notation logic 

for each section. 



2. Notes added to each section may not 

be inserted into the notation score in 

any order while they must be notated 

in chronological order. 

3. Between exact sections, there is 

likely a gap which is not necessarily 

expressible in the previous section's 

rhythmic system. 

 

2. NOTATION MODULE DESIGN 

 

2.1 The Section Class 

 

To allow notation logic to be 

instantiable for distinct exact sections, all 

the notation functionality previously 

implemented as static functions was 

refactored and decomposed into private 

member functions of a Section class. In the 

public interface, a clear distinction is made 

between the processes of inserting notes and 

building the score. Internally, a simple 

Boolean variable indicates whether the 

section is built, allowing notes to be inserted 

in any order while protecting against 

corrupting the section after building. This 

not only makes the code more intuitive for 

future contributors, but also makes the code 

easier to diagnose by reducing the 

possibility of side effects, or functions 

modifying data outside their scope. 

 

2.2 The NotationScore Class 

 

The NotationScore class manages 

Section classes by facilitating adding new 

sections to the score, inserting notes into the 

score, building the score, and outputting the 

final product to a text file. All these 

operations are clearly delimited by their own 

respective functions in the public interface. 

 

Since the root exact Event’s Tempo 

object is inherited throughout exact sections 

of CMOD's tree structure, distinct tempos 

represent different exact sections of the 

score separated by some inexact time span. 

Since all Tempo objects have a global 

inexact start time in seconds and every exact 

Event in the tree holds its own Tempo, every 

Event can attempt to add its own Tempo to 

the score. Then, the job of the NotationScore 

is to only construct and add sections from 

unique Tempos and keep the Section objects 

sorted in chronological order using their 

inexact global start time. 

 

3. SOLUTIONS TO PROBLEMS IN 

SCORE BUILDING 

 

3.1 Distributing Note Objects into Sections 

 

After all Sections are added to the 

score, an important problem is inserting 

Notes into the sections. Like the addition of 

new sections to the score, Notes are not 

necessarily added to the score in 

chronological order. Furthermore, while the 

Notes are constructed in the Bottom class 

consistently after their corresponding 

Tempo, it would constrain future 

development to rely on this obscure artifact 

of the class design to ensure that Notes are 

added to the correct section. One solution to 

the problem is to use the notes' global 

inexact start time to distribute them into 

sections with a corresponding time span. 

However, this could prove especially 

limiting in the future if layering is 

implemented in the NotationScore. Instead, 

the most reliable solution is to assign a 

unique identifier to both the Note and its 

corresponding Tempo. This identifier is 

essentially a pointer to the root exact 

ancestor Event of the section. For example, 

in the diagram below, the root exact 

ancestors would be M0 and B1. The Notes' 

identifiers can then be compared against 

those of the sections to determine into which 

the note can be inserted. 

 

 



 

3.2. Joining Notation Sections 

 

When two consecutive notation sections 

occur, suppose S1 and S2, S2's start time is 

determined in EDU's with respect to S1's 

time signature and tempo. For example, if 

S1 has 6 EDU's per beat at 60 beats per 

minute and S2 starts at 4 seconds globally, 

S2 then starts at 24 EDU's and S1 is given 

an allotment of 24 EDU's to fill during the 

build stage. Once S1 is built, S1 will have 

used some quantity of its allotted EDU's 

leaving a remainder r, and the last bar with 

some quantity of EDU's b. If r < 0 then the 

sections overlap and an error is produced, 

while if both r=0 and b=0, the sections align 

perfectly. In all other cases, a bar of 

shortened or lengthened time must be placed 

between the sections to accommodate the 

excess time requiring the following steps be 

taken: 

 

1. Iterate through each possible power 

of 2 that evenly divides the EDU's 

per beat of S1; let the power of 2 

be p and the result of the division 

be d. 

2. If a multiple of d equals the total 

EDU's to use (r+b), create a new 

time signature with a numerator 

of  (r + b) / d  and a denominator of 

the unit note of the previous section 

multiplied by p; return. 

3. If a multiple of d does not divide the 

total EDU's, find the multiple 

of d that would encompass the total 

EDU's and record the error as ϵ. 

4. Create a new time signature from the 

numerator and denominator that gave 

the smallest value of ϵ. 

 

The last bar is deleted from the flattened 

section and its constituent notes are added to 

a new, nested section made from the 

previously calculated time signature. The 

nested section is then built, and its contents 

are appended to those of the enclosing 

section. In the case that the calculated time 

signature is the same as the previous time 

signature (i.e. the sum of the remaining time 

and the time span of the last bar is a full bar) 

the time signature need not be notated. 

 

4. CONCLUSION AND FURTHER WORK 

 

This research has significantly 

increased the compatibility between the 

notation module and the full suite of features 

available in DISSCO, laying the foundation 

for extensions in the future. Using the class 

design outlined in this paper, it should be 

straightforward to implement aesthetic 

improvements in the output score, such as 

tempos and articulations. A logical 

extension is implementing a metadata class 

storing information about the score. Finally, 

further research could implement multiple 

concurrent lines of notation in the score. 

 

5. REFERENCES 

 
1. Sun, Haorong, & Tipei, Sever. “Automatic 

Notation of Complex Rhythms Using Sieves 

in DISSCO.” 2019 WOCMAT Conference, 

WOCMAT, 1 Dec. 2019, 

lewis841214.github.io/WOCMAT2019.github.

io/. 

2. Tipei, S., The Computer, a Composer's 

Collaborator, Leonardo Journal of the 

International Society for the Arts, Sciences, 

and Technology, vol.22, no. 2, pp. 189-195, 

1989 

3. Tipei, Sever. “XXII Generative Art 2019 

Conference.” Domus Argenia Publisher, ISBN 

978-88-96610-39-8, Manifold Compositions 

and the Evolving Entity, 2019, pp. 369–375. 

4. Tipei, Sever. “Conceiving Music Today: 

Manifold Compositions, DISSCO and 

Beyond.” 11th WSEAS International 

Conference on Acoustics & Music: Theory & 

Applications (AMTA '10), "G. Enescu" 

University, Iasi, Romania, June 2010. WSEAS 

Mechanical Engineering Series. 

5. Tipei, Sever. “Composition as an Evolving 

Entity; an Experiment in Progress.” Proc. 2016 

ICMC Int'l Computer Music Conference 

(Utrecht, The Netherlands, September 2016). 

6. Xenakis, I. - Formalized music, Pendragon 

Press, 1992. p. 268. 


